X-Ray Powder Diffraction and Raman Spectroscopy of CaF₂ (Fluorite) and CaCO₃ (Calcite)

Experiment #5

Characterization of Materials (96.445/545)

Meg Noah

Meg Noah 1 of 14 12/14/2009

Objective

The purpose of this lab is to characterize the similarities and differences of natural and synthetic CaF2 and to study the Raman spectrum of calcite. We want to better understand synthetic fluorite because it is used for optical equipment.

Experimental Equipment

The experimental equipment used for this lab included:

- Powdered and bulk samples of synthetic fluorite, bulk natural fluorite, bulk natural calcite
- Raman Systems, Inc. (RSI) RSL Plus R-3000 series and RSI Scan[®] software
- Raman Systems, Inc. (RSI) RSI-Indent® software.
- The XPowder software on the laboratory computer (to use for finding Raman Line position and FWHM).
- The inXitu BTX system of hardware and software
- The XPowder software on the laboratory computer

The BTX system and XPowder software were described in detail in the last lab report.

Procedure

1. Sample Preparation

The synthetic fluorite samples were already prepared by the instructor, and I donated the natural calcite and fluorite to the lab – these samples were already cleaved.

2. Acquire Raman Exposures

The BTX was not operational the day of our experiment, but Dr. Stimets and Hongmei Chen had previously performed analysis on the powder synthetic fluorite.

3. Acquire Raman Exposures

The procedure for acquiring the Raman spectra was described in the last laboratory write-up, and was used here. The bulk samples were not rotated, but the powder was.

Meg Noah 2 of 14 12/14/2009

Results and Discussion

Elements identified with X-Ray fluorescence

CaF₂ and CaCO₃ can't be chemically determined by X-Ray fluorescence. There is an impurity in the synthetic CaF₂ that can be found with X-Ray fluorescence, but the machine wasn't working when we did the lab.

Structure found in XPowder

Dr. Stimets and Hongmei Chen performed powder diffraction analysis of the powder synthetic

Figure 1: Powder Synthetic CaF₂

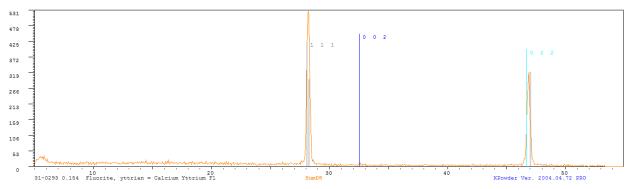
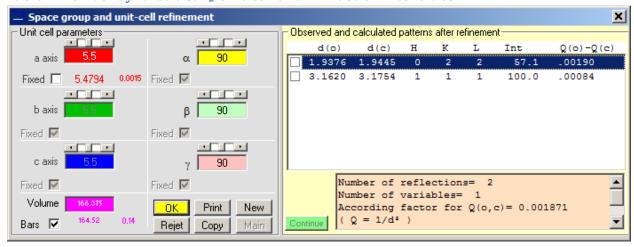



Table 1: Powder Synthetic CaF₂ Unit Cell and Diffraction Intensities

Meg Noah 3 of 14 12/14/2009

Figure 2: Powder Synthetic CaF₂

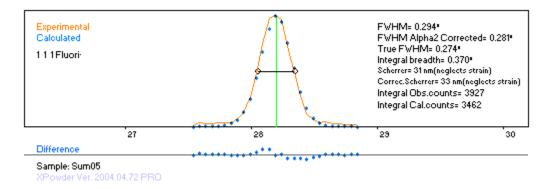
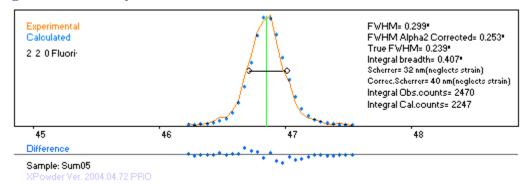



Figure 3: Powder Synthetic CaF₂

Raman Lines

Meg Noah 4 of 14 12/14/2009

Table 2: Our Measurements

Observed **Frequencies** of Raman-Active **Modes** effect on the line widths and line shapes.

Sample		RDSar	mple CaF		rotation period (10 seconds)						
Laser power low (12 o'clock)											
zaser power is	(12 0	2487			10s						
		2488			10s						
		2489			10s						
		2390			10s						
Beautiful Fine S	Snot	2330			103						
High Power (10		k high no	wer)								
1118111 04461 (14	5 0 0.00	2492	wery		10s						
		2493			10s						
Beautiful Little	Spot	2.55			100						
Medium Power	-	ock high	power)		10)s					
.vicaiaii i ove.	(5 0 0.	2496	porre.,		10s						
		2497									
		2498	bad		10s						
		2499			10s						
		2500			10s						
Meg's Sample	Purple		luorite	Raman							
0 1	10s										
	10s										
Blue Nati		orite									
	10s										
	10s	glitch									
	10s	glitch									
		2506									
		2507			10s	nice					
		2508									
		2509			10s	glitch					
Clear Na	tural Flu	uorite									
	10s	nice									
		2511			10s						
		2514			10s						
CaCO3					10s						
	10s										
	10s										
CaCO3		2519			10s						
		2520			10s						
		2521			10s						
		2522		-	10s						
		2523		-	10s						
		2524		-	10s						
		2525		-	10s						
		2526		-	10s						

Figure #3 (Sum 02 2492 2493)

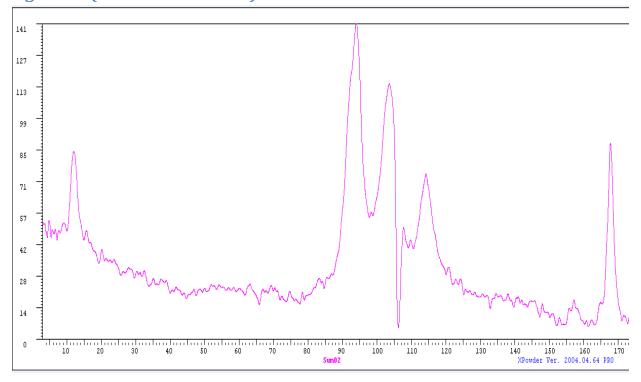


Figure #4 (Sum 03 2496 2497 2500)

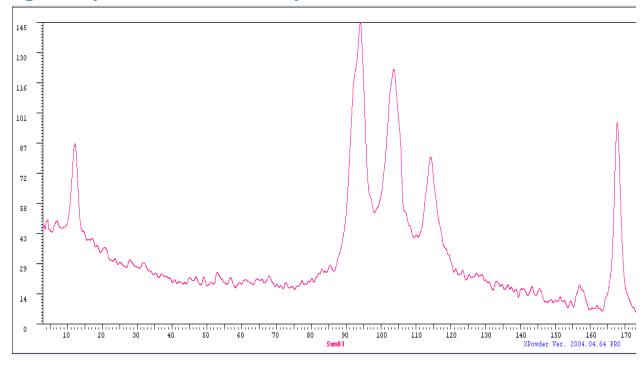
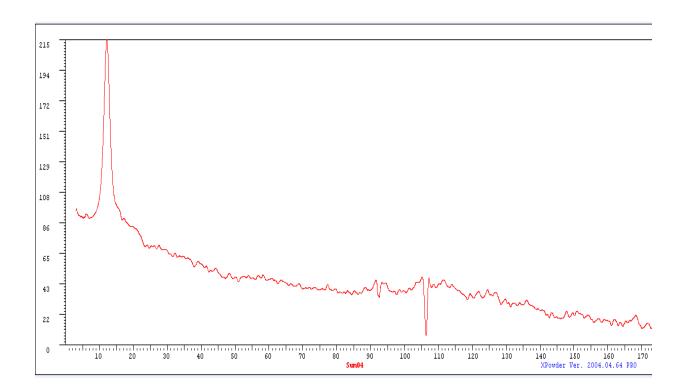



Figure #5 (Sum 04 2510 2511 2512 2514 One nice peak)

um 04 2510 2511 2512 2514 One nice peak)

Figure #6 (Sum 05 2501 2502) Purple

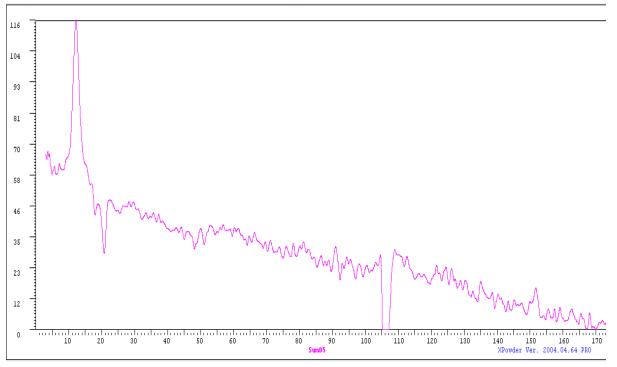


Figure #7 Blue (Sum 06 2503 2504 2505 2506)

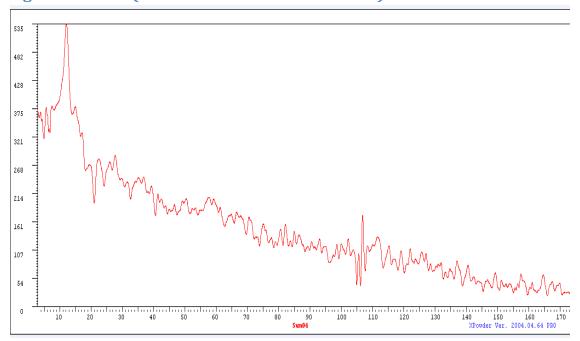
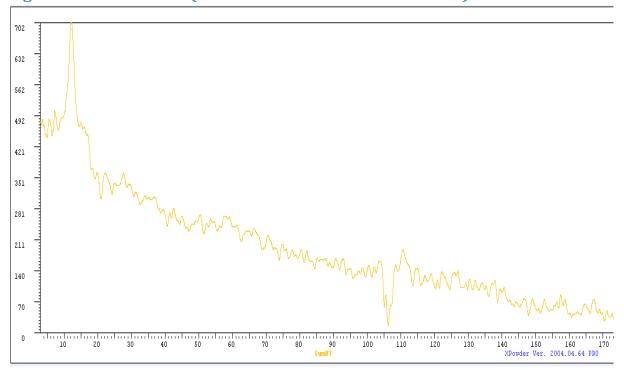



Figure #8 blue Sum 07 (2501 2502 2503 2506 2507 2508)

Meg Noah 8 of 14 12/14/2009

Figure #9 Sum 08 (2515 2516 2517 2518)

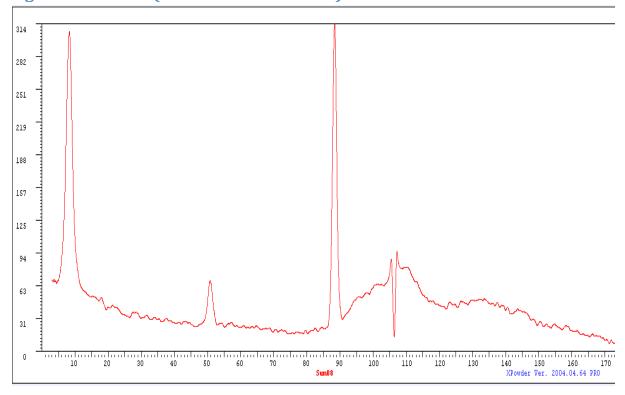
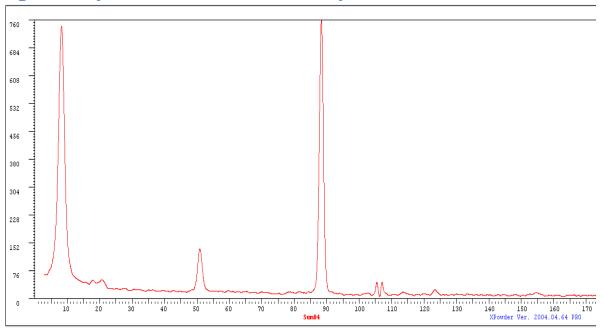
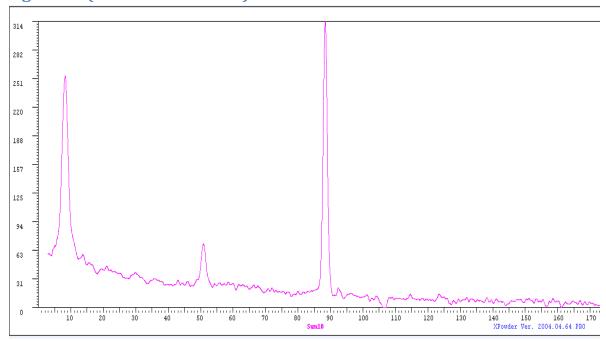
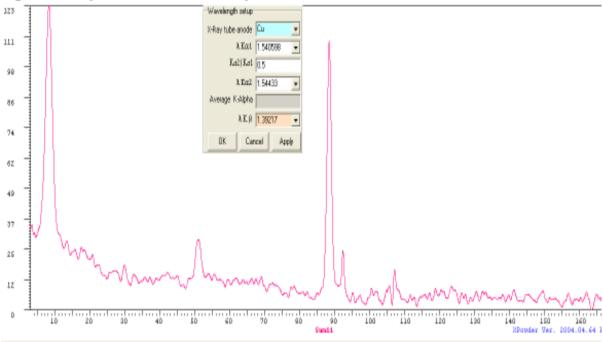
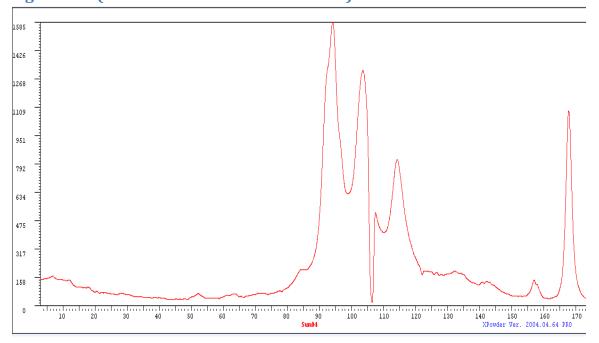




Figure #10 (Sum 09 2519 2520 2521 2522)



Meg Noah 9 of 14 12/14/2009

Figure 11 (Sum 10 2523 2524)



Figure#12 (Sum 11 2525 2526)

Meg Noah 10 of 14 12/14/2009

Figure #13(Sum 01 2487 2488 2489 2490)

Meg Noah 11 of 14 12/14/2009

Table 3: Raman Line Measurements (cm-1)

Sum 01 (2487 2488 2489 2490)					5 peaks						
w1	Δw	w2	Δw	w3	Δw	w4	Δw	w5	Δw		
1141	50	1231	37	1343	40	1773	27	1879	25		
Very Strong		Strong		moderate		weak		Strong			
Sum 02 (2492 2493)											
w1	Δw	w2	Δw	w3	Δw	w4	Δw	w5	Δw		
1095	64	1104	48	1198	312	1312	39	1849	21		
moderate		Strong		strong		moderate		strong			
Sum 03 (2496 2497 2500)											
w1	Δw	w2	Δw	w3	Δw	w4	Δw	w5	Δw	w6	Δw
320	16	1135	38	1231	38	1344	33	1773	22	1817	25
Moderate (Intensity: 87)		Strong		Strong		moderate		weak		Strong	
Sum 04 (2510 2511 2512 2514) One nice peak											
w1	Δw										
322	23										
Strong (Intensity: 215)											
Purple Sum 05 (2501 2502)											
w1	Δw	w2	Δw								
322	22	1711	24								
Strong (Intensity: 116)											
Blue Sum 06 (2503 2504 2505 2506)											
w1	Δw										
315	23										
Strong (Intensity: 535) Blue Sum 07(2501 2502 2503 2506 2507 2508)											
w1	Δw										
320	19										
Strong (intensity: 702)											
Sum 08(2515 2516 2517 2518)											
w1	Δw	w2	Δw	w3	Δw						
282	21	708	17	1085	15						
Strong (Intensity: 312)		weak		Strong							

Table 3: Raman Line Measurements continued

Sum 09(2519 2520 2521 2522)										
w1	Δw	w2	Δw	w3	Δw	w4	Δw	w5	Δw	
282	21	710	16	1083	20	1254	9	1276	10	
Strong (intensity: 758)		weak		Strong		weak		weak		
Sum 10(2523 2524)										
w1	Δw	w2	Δw	w3	Δw					
282	22	708	16	1083	18					
Strong (intensity: 252)		weak		Strong						
Sum 11(2525 2526)				(three peaks)						
w1	Δw	w2	Δw	w3	Δw					
281	24	710	13	1085	15					
Strong		weak		Strong						

Conclusions

X-Powder determined the lattice constant a value equals **5.4795**. The corresponding intensity equals 99 for 111 mode and **57** for 012 mode. Table 4 shows the measured modeled line intensities for CaF2, which are very close to the relative strengths that we measured. In previous modeling of X-Ray lines, we didn't use the correct atomic form factor that uses Cromer-Mann Coefficients for the CaF2 it is:

$$f^{o}(\sin \theta/\lambda) = \sum_{i=1}^{4} a_{i} \cdot e^{-b_{i}(\sin \theta/\lambda)^{2}} + c$$

Cromer-Mann coefficients for CA, z = 20										
f/i	1		2	3	4					
a	8.627		7.387	1.590	1.021					
b	10.442		0.660	85.748	178.437					
С	1.375		-	-	-					
Z cal	Z calculated from Cromer-Mann coefficients= 20.000									
Cror	ner-Mar	n coef	ficients for	F, z = 9						
f/i	1	2	3	4						
a	3.539	2.641	1.517	1.024						
b	10.283 4.294 0.262 26.148									
С	0.278	-	-	-						
Z calculated from Cromer-Mann coefficients= 8.999										

Table 4: Modeled CaF2 Line Intensities

(h,	k,	1)	Μ	d(Ang)	T(Deg)	fF	fCa	nfF	nfCa	S(hkl)	LP(T)	Intensity	
(1	1	1)	8	3.14714	28.33	7.14	14.09	0.00	4.00	56.35	3.82	97014.7	100.0
(2	2	0)	4	1.92722	47.12	5.42	11.34	8.00	4.00	88.70	1.25	39304.5	40.5
(2	0	0)	4	2.72550	32.83	6.72	13.39	-8.00	4.00	-0.20	2.78	0.4	0.0
(1	0	0)	4	5.45100	16.25	8.13	16.25	-0.00	0.00	-0.00	12.15	0.0	0.0
(1	1	0)	4	3.85444	23.06	7.60	14.97	0.00	0.00	0.00	5.90	0.0	0.0
(2	1	0)	8	2.43776	36.84	6.34	12.79	0.00	0.00	0.00	2.16	0.0	0.0

The position, the full width at half maximum and the intensity of the Taman line 322 cm^-1 for each sample has been shown. The rare earth could absorb photons in a band extending several hundred cm^-1 on either side of the 785-nm laser line are **Nd**, **Dy**, **Er**, **Tm**. Among these rare earths, **Nd**, **Dy** have an energy level below the excited level so that, when the electron relaxes to this lower level, it can emit a photon of somewhat lower energy and longer wavelength which looks like a Raman shift.

Meg Noah 14 of 14 12/14/2009